An introduction to Multitrace Formulations and Associated Domain Decomposition Solvers
نویسندگان
چکیده
Multitrace formulations (MTFs) are based on a decomposition of the problem domain into subdomains, and thus domain decomposition solvers are of interest. The fully rigorous mathematical MTF can however be daunting for the non-specialist. We introduce in this paper MTFs on a simple model problem using concepts familiar to researchers in domain decomposition. This allows us to get a new understanding of MTFs and a natural block Jacobi iteration, for which we determine optimal relaxation parameters. We then show how iterative multitrace formulation solvers are related to a well known domain decomposition method called optimal Schwarz method: a method which used Dirichlet to Neumann maps in the transmission condition. We finally show that the insight gained from the simple model problem leads to remarkable identities for Calderón projectors and related operators, and the convergence results and optimal choice of the relaxation parameter we obtained is independent of the geometry, the space dimension of the problem, and the precise form of the spatial elliptic operator, like for optimal Schwarz methods. We illustrate our analysis with numerical experiments.
منابع مشابه
Multitrace formulations and Dirichlet-Neumann algorithms
Multitrace formulations (MTF) for boundary integral equations (BIE) were developed over the last few years in [4] and [1, 2] for the simulation of electromagnetic problems in piecewise constant media, see also [3] for associated boundary integral methods. The MTFs are naturally adapted to the developments of new block preconditioners, as indicated in [5], but very little is known so far about s...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملDomain Decomposition Based High Performance Parallel Computing
The study deals with the parallelization of finite element based Navier-Stokes codes using domain decomposition and state-ofart sparse direct solvers. There has been significant improvement in the performance of sparse direct solvers. Parallel sparse direct solvers are not found to exhibit good scalability. Hence, the parallelization of sparse direct solvers is done using domain decomposition t...
متن کاملRestricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem
Overlapping balancing domain decomposition methods and their combination with restricted additive Schwarz methods are proposed for the Helmholtz equation. These new methods also extend previous work on non-overlapping balancing domain decomposition methods toward simplifying their coarse problems and local solvers. They also extend restricted Schwarz methods, originally designed to overlapping ...
متن کاملDomain Decomposition Solvers for the Fluid-Structure Interaction Problems with Anisotropic Elasticity Models Powered by TCPDF (www.tcpdf.org) DOMAIN DECOMPOSITION SOLVERS FOR THE FLUID-STRUCTURE INTERACTION PROBLEMS WITH ANISOTROPIC ELASTICITY MODELS
In this work, a two-layer coupled fluid-structure-structure interaction model is considered, which incorporates an anisotropic structure model into the fluid-structure interaction problems. We propose two domain decomposition solvers for such a class of coupled problems: a Robin-Robin preconditioned GMRES solver combined with an inner Dirichlet-Neumann iterative solver, and a Robin-Robin precon...
متن کامل